Numerical Evidences for QED₃ being Scale-invariant

Nikhil Karthik* and Rajamani Narayanan

Department of Physics Florida International University, Miami

Lattice for BSM Physics, ANL

April 22, 2016

NSF grant no: 1205396 and 1515446

- QED in 3-dimensions
- 2 Ways to break scale invariance of QED₃ dynamically
- Ruling out low-energy scales in QED₃
- 4 The other extreme: large- N_c limit
- Conclusions

Table of Contents

- QED in 3-dimensions
- 2 Ways to break scale invariance of QED₃ dynamically
- 3 Ruling out low-energy scales in QED₃
- 4 The other extreme: large- N_c limit
- Conclusions

Non-compact QED₃ on Euclidean ℓ^3 torus

Lagrangian

$$L = \overline{\psi}\sigma_{\mu}\left(\partial_{\mu} + iA_{\mu}\right)\psi + m\overline{\psi}\psi + \frac{1}{4g^{2}}\left(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}\right)^{2}$$

- ullet $\psi
 ightarrow$ 2-component fermion field
- $g^2 \rightarrow$ coupling constant of dimension [mass]¹ Scale setting $\Rightarrow g^2 = 1$
- massless Dirac operator: $C = \sigma_{\mu} \left(\partial_{\mu} + i A_{\mu} \right)$ A special property for "Weyl fermions" in 3d: $C^{\dagger} = -C$
- Theoretical interests: UV complete, super-renormalizable and candidate for CFT
- Aside from field theoretic interest, QED₃ relevant to high- T_c cuprates.

Nikhil Karthik (FIU) lattice QED3 April 22, 2016

3 / 30

Parity Anomaly and its cancellation

Parity:
$$x_{\mu} \rightarrow -x_{\mu}$$

$$A_{\mu} \rightarrow -A_{\mu}; \qquad \psi \rightarrow \psi; \qquad \overline{\psi} \rightarrow -\overline{\psi}$$

 $m\overline{\psi}\psi \to -m\overline{\psi}\psi \Rightarrow$ Mass term breaks parity (*i.e.*) the effective fermion action det C transforms as

$$\pm |\det C|e^{i\Gamma(m)} \to \pm |\det C|e^{i\Gamma(-m)} \stackrel{\mathsf{reg}}{=} \pm |\det C|e^{-i\Gamma(m)}.$$

• When a gauge covariant regulator is used,

$$\Gamma(0) \neq 0$$
 (parity anomaly, which is Chern-Simons).

• With 2-flavors of massless fermions, anomalies cancel when parity covariant regulator is used. We will only consider this case in this talk.

Nikhil Karthik (FIU) lattice QED3 April 22, 2016 4 / 30

Parity and Gauge invariant regularization for even N

- Two flavors of two component fermions: ψ and χ .
- $\bullet \ \, \text{Define parity transformation:} \qquad \psi \leftrightarrow \chi \ \text{and} \ \overline{\psi} \leftrightarrow -\overline{\chi}.$

Fermion action with 2-flavors

$$S_f = \left(egin{array}{cc} \overline{\psi} & \overline{\chi} \end{array}
ight) \left[egin{array}{cc} C+m & 0 \ 0 & -(C+m)^\dagger \end{array}
ight] \left(egin{array}{c} \psi \ \chi \end{array}
ight)$$

- If the regulated Dirac operator for one flavor is $C_{\rm reg}$ and the other is $-C_{\rm reg}^{\dagger}$, theory with even fermion flavors is both parity and gauge invariant.
- Massless N-flavor theory has a U(N) symmetry:

$$\begin{pmatrix} \psi \\ \chi \end{pmatrix} \rightarrow U \begin{pmatrix} \psi \\ \chi \end{pmatrix} \qquad U \in U(2).$$

Mass explitly breaks $U(N) \to U\left(\frac{N}{2}\right) \times U\left(\frac{N}{2}\right)$.

5 / 30

Parity and Gauge invariant regularization for even N

- ullet Two flavors of two component fermions: ψ and χ .
- $\bullet \ \, \text{Define parity transformation:} \qquad \psi \leftrightarrow \chi \ \text{and} \ \overline{\psi} \leftrightarrow -\overline{\chi}.$

Fermion action with 2-flavors

$$S_f = \left(egin{array}{cc} \overline{\chi} & \overline{\psi} \end{array}
ight) \left[egin{array}{cc} 0 & C+m \ -(C+m)^\dagger & 0 \end{array}
ight] \left(egin{array}{c} \psi \ \chi \end{array}
ight)$$

- If the regulated Dirac operator for one flavor is $C_{\rm reg}$ and the other is $-C_{\rm reg}^{\dagger}$, theory with even fermion flavors is both parity and gauge invariant.
- Massless N-flavor theory has a U(N) symmetry:

$$\begin{pmatrix} \psi \\ \chi \end{pmatrix} \rightarrow U \begin{pmatrix} \psi \\ \chi \end{pmatrix} \qquad U \in U(2).$$

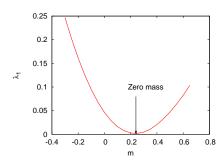
Mass explitly breaks $U(N) \to U\left(\frac{N}{2}\right) \times U\left(\frac{N}{2}\right)$.

Parity-covariant Wilson fermions

Regulate one using $X = C_n - B + m$ and the other with $-X^{\dagger} = C_n + B - m$:

$$H_{w} = \left[\begin{array}{cc} 0 & X(\mathbf{m}) \\ X^{\dagger}(\mathbf{m}) & 0 \end{array} \right]$$

 $m \rightarrow$ tune mass to zero as Wilson fermion has additive renormalization



Advantage: All even flavors N can be simulated without involving square-rooting.

Nikhil Karthik (FIU) lattice QED3 April 22, 2016 6 / 30

Factorization of Overlap fermions

In 3d, the overlap operator for a single four component fermion (equivalent to N=2) factorizes in terms of two component fermions:

$$H_{
m ov}=\left[egin{array}{cc} 0 & rac{1}{2}(1+V) \ rac{1}{2}(1+V^\dagger) & 0 \end{array}
ight]; \qquad V=rac{1}{\sqrt{XX^\dagger}}X$$

Advantages: All even flavors can be simulated without square-rooting; exactly massless fermions;

Nikhil Karthik (FIU) lattice QED3 April 22, 2016 7 / 30

Table of Contents

- QED in 3-dimensions
- 2 Ways to break scale invariance of QED₃ dynamically
- 3 Ruling out low-energy scales in QED₃
- $^{(4)}$ The other extreme: large- N_c limit
- Conclusions

A few ways ...

- Spontaneous breaking of U(N) flavor symmetry, leading to a plethora of low-energy scales like Σ , f_{π} , . . .
- Particle content of the theory being massive
- Presence of typical length scale in the effective action: $V(x) \sim \log\left(\frac{x}{\Lambda}\right)$

$$U\left(\frac{N}{2}\right) \times U\left(\frac{N}{2}\right)$$

$$U(N)$$
 Condensate Critical scale invariant (conformal?)

N

8 / 30

Spontaneous breaking of U(N) symmetry

Large-N gap equation: $N_{\rm crit} \approx 8$ (Appelquist et al. '88)

Assumptions: $N \approx \infty$, no fermion wavefunction renormalization, and feedback from $\Sigma(p)$ in $\Sigma(p)$ is ignored.

Free energy argument: $N_{crit} = 3$ (Appelquist *et al.* '99)

- Contribution to free energy: bosons $\rightarrow 1$ and fermions $\rightarrow 3/2$
- IR $\Rightarrow \frac{N^2}{2}$ Goldstone bosons + 1 photon
- UV \Rightarrow 1 photon + N fermions
- Equate UV and IR free energies

Recent interest: Wilson-Fisher fixed point in $d=4-\epsilon$

Pietro et al.'15

- IR Wilson-Fisher fixed point at $\frac{\mathit{Ng}^2_*(\mu)}{\mu^\epsilon} = 6\pi^2\epsilon$
- Compute anomalous dimensions of four-fermi operators

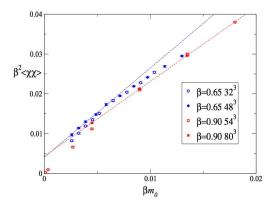
$$O_{\Gamma} = \sum_{i,j} \overline{\psi_i} \Gamma \psi_i \overline{\psi_j} \Gamma \psi_j(x)$$

- Extrapolate to $\epsilon=1$ and find O_{Γ} 's become relevant at the IR fixed point when $N\approx 2$ -4.
- Caveats: mixing with $F_{\mu\nu}^2$ was ignored. Large-N calculation (Pufu *et al.*'16) seems to suggest that with this mixing, the dimension-4 operators remain irrelevant.

Nikhil Karthik (FIU) lattice QED3 April 22, 2016 10 / 30

Previous attempts using Lattice

Hands et al., '04 using square-rooted staggered fermions.



Condensate as a function of fermion mass.

Previous attempts using Lattice

Hands et al., '04 using square-rooted staggered fermions.



Method works if it is known a priori that condensate is present; A possible critical m^{δ} term, which would be dominant at small m, could be missed.

Table of Contents

- QED in 3-dimensions
- 2 Ways to break scale invariance of QED₃ dynamically
- 3 Ruling out low-energy scales in QED₃
- $^{(4)}$ The other extreme: large- N_c limit
- Conclusions

Simulation details

Parameters

- L^3 lattice of physical volume ℓ^3
- ullet Non-compact gauge-action with lattice coupling $eta=rac{2L}{\ell}$

Improved Dirac operator was used

- Smeared gauge-links used in Dirac operator
- Clover term to bring the tuned mass *m* closer to zero

Statistics

- Standard Hybrid Monte-Carlo
- 14 different ℓ from $\ell=4$ to $\ell=250$
- 4 different lattice spacings: L = 16, 20, 24 and 28
- 500 − 1000 independent gauge-configurations

12 / 30

Computing bi-linear condensate from FSS of low-lying Dirac eigenvalues

(Wigner '55)

- Let a system with Hamiltonian H be chaotic at classical level.
- Let random matrix T, and H have same symmetries: UHU^{-1}
- Unfold the eigenvalues *i.e.*, transform $\lambda \to \lambda^{(u)}$ such that density of eigenvalues is uniform.

$$\lambda^{(u)} = \int_0^\lambda \rho(\lambda) d\lambda$$

• The combined probablity distribution $P(\lambda_1^{(u)}, \lambda_2^{(u)}, \dots)$ is expected to be universal and the same as that of the eigenvalues of T

Nikhil Karthik (FIU) lattice QED3 April 22, 2016 13 / 3

Computing bi-linear condensate from FSS of low-lying Dirac eigenvalues

• Banks-Casher relation \Rightarrow non-vanishing density at $\lambda = 0$

$$\Sigma = rac{\pi
ho(0)}{\ell^3}; \qquad ext{where} \qquad \int_0^\infty
ho(\lambda) d\lambda = \ell^3$$

• Unfolding $\Rightarrow \lambda^{(u)} \approx \rho(0)\lambda \sim \Sigma \ell^3 \lambda$. Therefore, universal features are expected to be seen in the microscopic variable z:

$$z = \lambda \ell^3 \Sigma$$
.

- $P(z_1, z_2, ..., z_{\text{max}})$ is universal and reproduced by random T with the same symmetries as that of Dirac operator D. (Shuryak and Verbaarschot '93)
- Rationale: Reproduces the Leutwyler-Smilga sum rules from the zero modes of Chiral Lagrangian.
- Eigenvalues for which agreement with RMT is expected / Momentum scale upto which only the fluctuations of zero-mode of Chiral Lagrangian matters:

$$z_{
m max} < F_{\pi} \ell$$
 (Thouless energy)

14 / 30

Nikhil Karthik (FIU) lattice QED3 April 22, 2016

RMT and Broken phase: Salient points

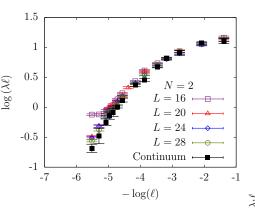
Scaling of eigenvalues:

$$\lambda \ell \sim \ell^{-2}$$

- Look at ratios $\lambda_i/\lambda_j = z_i/z_j$. Agreement with RMT has to be seen without any scaling.
- \bullet The number of microscopic eigenvalues with agreement with RMT has to increase linearly with ℓ

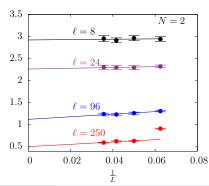
Nikhil Karthik (FIU) lattice QED3 April 22, 2016 15 / 30

Finite size scaling of eigenvalues: continuum limits

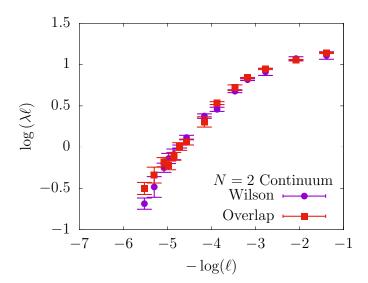


Lattice spacing effect using Wilson fermions

Find continuum limit at each fixed ℓ .

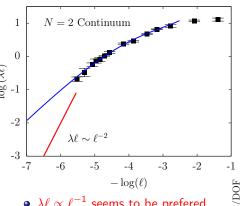


Agreement between Wilson and Overlap



Nikhil Karthik (FIU) lattice QED3 April 22, 2016 17 / 30

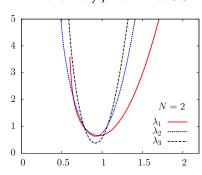
Absence of bi-linear condensate: $\lambda \sim \ell^{-1-p}$ and $p \neq 2$



- $\lambda \ell \propto \ell^{-1}$ seems to be preferred.
- The condensate scenario, $\lambda\ell\propto\ell^{-2}$ seems to be ruled out.

Ansatz:
$$\log(\lambda \ell) = \frac{a - (p + \frac{b}{\ell})\log(\ell)}{1 + \frac{c}{\ell}}$$

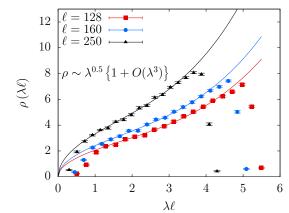
Robustness: Changing ansatz to $\lambda \ell \sim \ell^{-p} \left(1 + \frac{a}{\ell} + \ldots \right)$ changes the likely p from 1 to 0.8.



Nikhil Karthik (FIU) April 22, 2016 lattice QED3

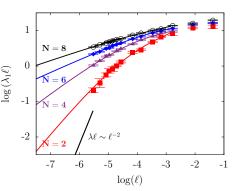
Eigenvalue density

$$\lambda \sim \ell^{-1-p} \Rightarrow \quad \rho(\lambda) \sim \lambda^{(2-p)/(1+p)} \quad \text{and} \quad \Sigma(m) \sim m^{(2-p)/(1+p)} \quad \text{DeGrand '09}$$



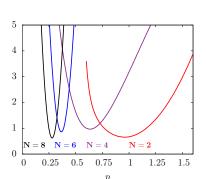
 $ho \sim \lambda^{0.5}$ in the bulk

N = 2, 4, 6, 8



- p decreases with N: trend $\Rightarrow p \approx \frac{2}{N} \stackrel{\text{fo}}{\sim} 2$
- $p \approx 1$ is right at the edge of allowed value from CFT constraints.

Ansatz: $\log(\lambda \ell) = \frac{a - (p + \frac{b}{\ell}) \log(\ell)}{1 + \frac{c}{\ell}}$



Nikhil Karthik (FIU) lattice QED3 April 22, 2016

Absence of condensate using Inverse Participation Ratio

• For normalized eigenvectors of D

$$I_2 = \int |\psi(x)|^4 d^3x$$

Volume scaling

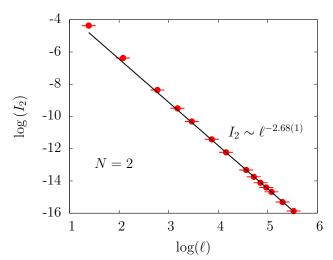
$$I_2 \propto \ell^{-(3-\eta)}$$

- Condensate \Rightarrow RMT $\rightarrow \eta = 0$.
- Localized eigenvectors $\rightarrow \eta = 3$.
- Eigenvector is multi-fractal for other values.

Nikhil Karthik (FIU) lattice QED3 April 22, 2016 21 / 30

A multifractal IPR

A theory with condensate is analogous to a metal. Multifractality is typical at a metal-insulator critical point.



Nikhil Karthik (FIU) lattice QED3 April 22, 2016 22 / 30

Spectrum of massless QED₃

"Pion":
$$O_{\pi}(x) = \overline{\psi}\chi(x) \pm \overline{\chi}\psi(x)$$

"Rho":
$$O_{
ho}(x) = \overline{\psi}\sigma_{i}\chi(x) \pm \overline{\chi}\sigma_{i}\psi(x)$$

Theory with a scale:

$$\langle O(x)O(0)\rangle \sim \exp\{-Mx\}$$

Scale-invariant theory:

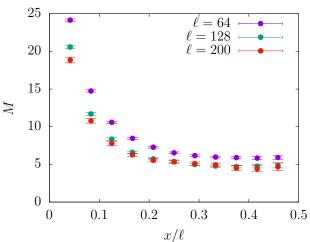
$$\left\langle \mathit{O}(x)\mathit{O}(0) \right
angle \sim rac{1}{|x|^{\delta}} f\left(rac{x}{\ell}
ight) \longrightarrow rac{1}{|x|^{\delta}} \exp\left\{-Mrac{x}{\ell}
ight\}$$

Extract M by fits to correlators. To extract δ , one needs both ℓ large and $Mx \ll \ell$. We do not have control over both scales.

23 / 30

Spectrum of massless QED₃

Effective mass shows a plateau as a function of x/ℓ — Scaling function is $\exp\left\{-M\frac{x}{\ell}\right\}$

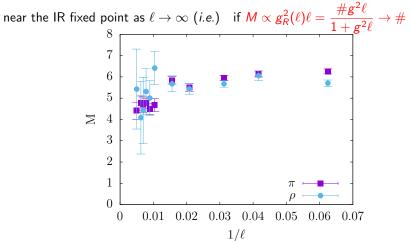


Nikhil Karthik (FIU)

Spectrum of massless QED₃

As $\ell \to \infty$, M has a finite limit for both π and ρ .

The plateau in M as a function of ℓ could imply the vanishing of $\beta = \frac{dg_R^2(\ell)\ell}{d\log\ell}$

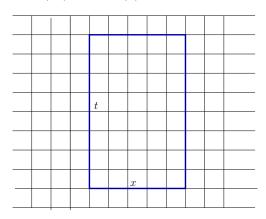


Nikhil Karthik (FIU)

lattice QED3

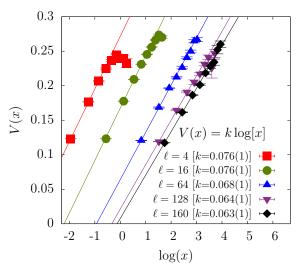
Absence of scale in log(x) potential

$$t \times x$$
 Wilson loop $\rightarrow \log(W) = A + V(x)t$



Absence of scale in log(x) potential

If $V(x) \sim \log\left(\frac{x}{\Lambda}\right)$, it would have a well defined limit at fixed x when $\ell \to \infty$



Nikhil Karthik (FIU) lattice QED3 April 22, 2016

26 / 30

Absence of scale in log(x) potential

Instead, a scale invariant potential $V(x) \sim \log\left(\frac{x}{\ell}\right)$

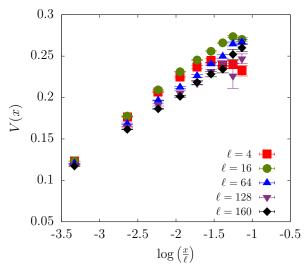


Table of Contents

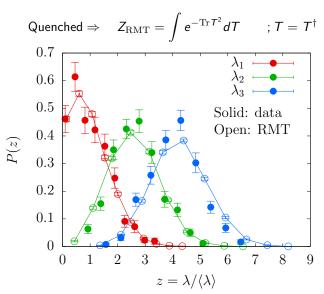
- QED in 3-dimensions
- 2 Ways to break scale invariance of QED₃ dynamically
- 3 Ruling out low-energy scales in QED3
- $oxed{4}$ The other extreme: large- N_c limit
- Conclusions

Finding bilinear condensate in large N_c in 3d

- Pure non-abelian gauge theories in 3d have string tension. Questions: With N flavors of fermions, do they have bilinear condensate? Critical N (or different critical N's) at each N_c where condensate and string tension vanish?
- First step: Large N_c , where quenched approximation is exact.
- Assume partial volume reduction for $\frac{1}{\ell} < \mathcal{T}_c$. We keep the lattice coupling $\beta < \beta_c$ on 5^3 lattice with $N_c = 7, 11, \ldots, 37$. Determine the eigenvalues of the Hermitian overlap operator.

Nikhil Karthik (FIU) lattice QED3 April 22, 2016 27 / 3

Agreement with Non-chiral RMT



A guess

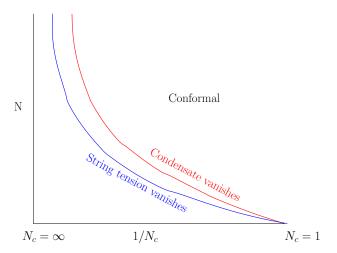


Table of Contents

- QED in 3-dimensions
- 2 Ways to break scale invariance of QED₃ dynamically
- 3 Ruling out low-energy scales in QED₃
- $^{(4)}$ The other extreme: large- N_c limit
- Conclusions

Conclusions

scale invariant (conformal?)

N

Nikhil Karthik (FIU) lattice QED3 April 22, 2016 30 / 30